Neutronenbeugungsuntersuchungen an ternären Laves-Phasen vom MgCu₂-Typ

MIROSLAV ELLNER UND BRUNO PREDEL

Max-Planck-Institut für Metallforschung, Stuttgart, Institut für Werkstoffwissenschaften und Institut für Metallkunde der Universität Stuttgart, Deutschland

Received September 7, 1978; in final form December 20, 1978

An polykristallinen Laves-Phasen vom MgCu₂-Typ aus den ternären Systemen MgCu_{2-x}Zn_x, MgCu_{2-x}Ni_x und MgNi_{2-x}Zn_x wurden Röntgen- und Neutronenbeugungsuntersuchungen durchgeführt. Im Existenzbereich der Mischkristalle wurde kein Hinweis auf eine strukturelle Änderung oder auf eine Fernordnung gefunden. Die Gitterparameter des kubischen Mischkristalls MgCu_{2-x}Zn_x wurden im gesamten Existenzbereich gemessen. Es wird ein Zusammenhang zwischen lokaler Änderung der physikalischen Eigenschaften und der ganzzahligen Anzahl der Elektronen je Elementarzelle diskutiert.

Both X-ray and neutron diffraction investigations were carried out on polycrystalline Laves phases of the $MgCu_2$ type in the $MgCu_{2-x}Zn_x$, $MgCu_{2-x}Ni_x$, and $MgNi_{2-x}Zn_x$ ternary systems. Within the existence range of the solid solutions, no indication was found for either a structure change or ordering. The lattice parameters of the cubic $MgCu_{2-x}Zn_x$ solid solutions were measured for the entire existence range. A relationship between the local changes in physical properties and the integral number of electrons per one elementary cell is discussed.

Vorbemerkung

Bereits Laves und Witte (1) haben festgestellt, daß für das Auftreten der Phasen vom MgCu₂-, MgNi₂- und MgZn₂-Strukturtyp die Valenzelektronenkonzentration verantwortlich Eine ist. genauere Untersuchung der Existenzbereiche dieser Phasen in den pseudobinären Systemen $MgCu_{2-x}Zn_x$ $MgCu_{2-x}Ni_x$ und $MgNi_{2-x}Zn_x$ wurde anschließend von Lieser und Witte (2) vorgenommen. Erst spätere strukturelle Untersuchungen von Komura und Mitarbeitern (3) haben gezeigt, daß die magnesiumhaltigen Phasen vom MgNi₂- und MgZn₂-Strukturtyp in ihrem Existenzbereich Stapelvarianten aufweisen. Aufgrund der Verwandtschaft der dichtesten Kugelpackung des Cu- und des MgCu₂-

Strukturtyps hat Schubert (4, 5) für die magnesiumhaltigen Phasen dieser Strukturtypen einen Zusammenhang zwischen der Valenzelektronenkonzentration und der Stapelfolge festgestellt.

Große Aufmerksamkeit wurde den physikalischen Eigenschaften pseudobinärer Laves-Phasen gewidmet, die im Existenzbereich des MgCu₂-Strukturtyps oft bei bestimmten Valenzelektronenkonzentrationen in ihrer Konzentrationsabhängigkeit Lokalextreme aufwiesen. So wurden beispielsweise Messungen der magnetischen Suszeptibilität (6), der Wasserstofflöslichkeit (7), der spezifischen Wärme (8-10), des Elastizitätsmoduls (11) und der Gitterparameter unter hohem Druck (12) durchgeführt. Bei Messungen der Bildungsenthalpien pseudobinärer Mischkristalle vom

MgCu₂-Strukturtyp wurde beobachtet, daß Stabilität der Mischkristalle die bei bestimmten Valenzelektronenkonzentrationen abnimmt (13, 14). Eine Wiederholung der Messungen an der Phase MgCu_{2-x}Zn_x konnte die früheren Ergebnisse vervollständigen (15). Es wurde festgestellt, daß eine Erniedrigung der Stabilität des Mischkristalls $MgCu_{2-x}Zn_x$ mit bestimmten ganzzahligen Stöchiometrien der Elementarzelle in Verbindung zu setzen ist. Dabei ergab sich die Frage, ob es sich bei den betreffenden Stöchiometrien um eine geordnete Verteilung von Cu- und Zn-Atomen im Cu-Teilgitter handelt, ob also eine Fernordnung mit Überstrukturbildung im Existenzbereich des Mischkristalls vorhanden ist, oder ob der Effekt allein elektronischer Natur ist. Eine bereits früher mit Hilfe der Bandtheorie (6, 16, 17) versuchte Deutung des Verhaltens der Mischkristalle vom MgCu₂-Strukturtyp kann die bei Messungen der Bildungsenthalpien beobachteten Effekte nicht vollständig erklären

Da sich die Atomformfaktoren von Nickel, Kupfer und Zink für Röntgenbeugung nur geringfügig unterscheiden, kann man die Frage nach einer Überstrukturbildung röntgenographisch nicht klären. Für Neutronenbeugungsexperimente sind die Atomformfaktoren dieser Elemente wesentlich günstiger. Es wurden deswegen Neutronenbeugungsmessungen an einigen polykristallinen ternären Phasen vom MgCu₂-Strukturtyp durchgeführt, über die im folgenden berichtet wird.

Experimentelle Methoden und Ergebnisse

Zur Herstellung von Legierungen wurden Elemente folgender Reinheit und Herkunft benutzt: Kupfer 99,99% Preussag AG, Zink 99,99% Preussag AG, Nickel 99,99% Metals Research und Magnesium 99,95% Metals Research. Die Metalle wurden unter Argonatmosphäre und ständigem Rühren in Korundtiegeln im Tammannofen erschmolzen und anschließend in einer Kupferkokille rasch abgekühlt. Es erwies sich für die zinkhaltige Legierung als zweckmäßig, zunächst eine Cu-Znbzw. Ni-Zn-Legierung in einem Argondruckofen bei 60 Atü Druck herzustellen und diese dann mit Magnesium im Tammannofen zu legieren. Für die Gitterparameterermittlung und für kalorimetrische Messungen (15) wurde eine Reihe von MgCu_{2-r}Zn_r-Legierungen mit einer Gesamteinwaage von ca. 10 g hergesellt; ein Teil dieser Legierungen war im regulinischen Zustand einen Tag bei 400°C geglüht und nach Mörsern 12 Stunden bei 400°C entspannt worden.

Die Einwaage der für die Neutronenbeugung benutzten Proben betrug ca. 60 g. Die erschmolzenen Legierungen der Stöchiometrie $Mg_8Cu_{15}Zn_1$, $Mg_8Cu_{14}Zn_2$, $Mg_8Cu_{12}Zn_4$, $Mg_8Cu_{10}Zn_6$, $Mg_8Cu_8Zn_8$, Mg₈Cu₁₂Ni₄, Mg₈Ni₈Zn₈ und Mg₈Ni₆Zn₁₀ wurden in eine Kupferkokille mit 8 mm Durchmesser zu ca. 12 cm langen Stäben abgegossen und drei Tage bei 400°C homogenisiert. Einige weitere Legierungen dieser Stöchiometrie wurden nach der Homogenisierung pulverisiert und bei 400°C bzw 250°C entspannt. Sie wurden dann für die Neutronenbeugung als Pulverpräparate in Quarzampullen von ca. 8 mm Durchmesser benutzt. Alle hergestellten Legierungen wurden metallographisch und mit Guinieraufnahmen mit Cu $K\alpha_1$ auf Einphasigkeit geprüft. Die Stäbe wurden nach erfolgtem Neutronenbeugungsexperiment zerschlagen; eine metallographische Untersuchung ihrer Anschliffe zeigte, daß alle Legierungen einphasig geblieben waren. Eine röntgenographische Untersuchung dieser Anschliffe mit Rückstrahlaufnahmen wies auf das Vorhandensein einer Textur hin.

Zur Anfertigung asymmetrischer Debye-Scherrer-Aufnahmen diente eine Kamera mit 114,8 mm Durchmesser mit einseitig beschichtetem Film. Pulverpräparate wurden in Kapillaren von 0,1 mm Durchmesser untergebracht und mit CuK α -Strahlung zwei Stunden belichtet. Die Filme wurden auf einem Abbe-Komparator vermessen und auf Filmschrumpfung, $CuK\alpha_1$ -Strahlung, Exzentrizität und Durchmesser des Präparatstäbchens (18) korrigiert. Zur Verfeinerung der Gitterparameter nach der Methode der kleinsten Fehlerquadrate wurden alle im Bereich von $(111)_k$ bis $(226)_k$ liegenden Reflexe benutzt.

Die Ergebnisse der Gitterparametermessungen an der kubischen Laves-Phase im Mischkristall MgCu_{2-x}Zn_x sind in Tabelle I und Abb. 1 zusammengefaßt. Die Gitter-

konstante nimmt linear mit dem Zinkgehalt zu. Die Differenz zwischen den Gitterparametern der schnell abgekühlten und der homogenisierten Proben bei höherem Zinkgehalt deutet auf starke Mischkristallseigerung hin, was auch metallographisch zu beobachten war. Eine erweiterte konstitutionelle Untersuchung der kubischen Mischkristalle MgCu_{2-x}Zn_x, MgCu_{2-x}Ni_x und MgNi_{2-x}Zn_x erfolgte mit Hilfe metallographischer Anschliffe und Guinieraufnahmen. Die aus dem gesamten Homogenitätsbereich der Mischkristalle entnommenen Legierungen wurden bei Temperaturen

INDELLE I	TA	B	EL	L	E	I
-----------	----	----------	----	---	---	---

Gitterparameter des Mischkristalls $Mg_{0,333}Cu_{0,667-x}Zn_x$ vom $MgCu_2$ -Strukturtyp⁴

Molenbruch (x _{Zn})	Gitterparameter (a in Å)	Molenbruch (x _{Zn})	Gitterparameter (a in Å)
0,000	$7,034 \pm 0,001$	0,220	$7,130 \pm 0,001 x$
0,005	$7,039 \pm 0,001 \ x$	0,220	$7,132 \pm 0,001$
0,010	$7,041 \pm 0,001$	0,230	$7,137 \pm 0,001 x$
0,020	$7,047 \pm 0,001$	0,240	$7,136 \pm 0,001$
0,030	$7,049 \pm 0,001$	0,240	$7,137 \pm 0,001 x$
0,040	$7,056 \pm 0,001$	0,250	$7,144 \pm 0,001$
0,045	$7,055 \pm 0,001 \ x$	0,250	$7,144 \pm 0,001 x$
0,050	$7,057 \pm 0,001$	0,260	$7,142 \pm 0,001$
0,055	$7,060 \pm 0,001 x$	0,280	$7,154 \pm 0,001$
0,060	$7,061 \pm 0,001$	0,300	$7,160 \pm 0,001 x$
0,070	$7,062 \pm 0,001$	0,300	$7,160 \pm 0,001$
0,075	$7,070 \pm 0,001 x$	0,310	$7,164 \pm 0,001$
0,080	$7,071 \pm 0,001$	0,320	$7,163 \pm 0,001$
0,085	$7,073 \pm 0,001 x$	0,320	$7,168 \pm 0,001 x$
0,090	$7,072 \pm 0,001$	0,330	$7,167 \pm 0,001$
0,100	$7,078 \pm 0,001 \ x$	0,333	$7,169 \pm 0,001$
0,100	$7,080 \pm 0,001$	0,333	$7,173 \pm 0,001 x$
0,120	$7,084 \pm 0,001 x$	0,340	$7,175 \pm 0,001$
0,120	$7,086 \pm 0,001$	0,350	$7,179 \pm 0,001$
0,140	$7,096 \pm 0,001$	0,350	$7,180 \pm 0,001 x$
0,150	$7,099 \pm 0,001 x$	0,370	$7,179 \pm 0,001$
0,160	$7,102 \pm 0,001$	0,370	$7,188 \pm 0,001 x$
0,167	$7,109 \pm 0,001$	0,380	$7,182 \pm 0,001$
0,170	$7,107 \pm 0,001 x$	0,390	$7,137 \pm 0,001$
0,180	$7,114 \pm 0,001$	0,390	$7,191 \pm 0,001 x$
0,200	7,119±0,001	0,400	$7,198 \pm 0,001 x$

^a Warmbehandlung: $Zn_0 \ldots Zn_{30}$ Regulus 12 St.400°C/Wasser, Pulver 12 St.400°C/Wasser; $Zn_{32} \ldots Zn_{45}$ Regulus 12 St.400°C/Wasser, Pulver 12 St.350°C/Wasser. Die mit (x) bezeichneten Proben wurden von der Schmelztemperatur in einer gekühlten Kokille abgeschreckt.

ABB. 1. Gitterparameter der Phase $MgCu_{2-x}Zn_x$ vom $MgCu_2$ -Strukturtyp als Funktion des Zinkgehalts.

zwischen 240 und 500°C eine Woche bis drei Monate lang getempert. Die Guinieraufnahmen zeigten jedoch keine Änderung des MgCu₂-Strukturtyps. Bei den metallographisch homogenen Proben waren weder Aufspaltungen der Linien noch zusätzliche Linien bei den Guinieraufnahmen (Cu $K\alpha_1$) beobachtet worden. Lediglich Legierungen der Mischkristallreihe MgNi_{2-x}Zn_x zeigten eine Linienverbreiterung, die auf eine Mischkristallseigerung zurückzuführen ist, was auch durch metallographische Anschliffe bestätigt werden konnte. Eine Serie Splat-cooling-Experimenten von an Legierungen bestimmter, hier interessierender Stöchiometrie, lieferte Guinieraufnahmen mit scharfen Linien vom $MgCu_2$ -Typ.

Einige differentialthermoanalytische Untersuchungen an der Legierung $Mg_8Cu_8Zn_8$, die, wie aus dem Zustandsbild $MgCu_2-MgZn_2$ (2) ersichtlich, einem Maximum in der Liquiduslinie entspricht, ergaben weder beim Abkühlen noch beim Aufheizen im Bereich von 115° bis 700°C Besonderheiten.

Die Neutronenbeugungsuntersuchungen wurden an einem Pulverdifraktometer mit Cu(220)-Monochromator (Schrittweite $\theta =$ 0,2 bzw. 0,25, Wellenlänge $\lambda = 1,100$ Å) durchgeführt. Die gemessenen Impulse wurden gegen den Winkel θ aufgetragen und die Intensität der Beugungsreflexe planimetrisch ermittelt und auf die Intensität des stärksten Reflexes (113)_k normiert. Der Intensitätsverlauf einer Diffraktometeraufnahme ist am Beispiel der Legierung (Stabdurchmesser $Mg_8Ni_6Zn_{10}$ 8 mm. 10 Tage 650°C/Luft) in Abb. 2 wiedergegeben. Die im Bereich der Winkel θ zwischen 1,5° und 41,5° aufgenommenen Reflexe alle dem MgCu₂-Strukturtyp konnten zugeordnet werden. Es wurden keine zusätzlichen Reflexe beobachtet, die Anlaß zur Annahme einer Überstruktur geben könnten. Zwischen den Intensitäten einiger pulverisierter und gegossener Proben der gleichen chemischen Zusammensetzung

ABB. 2. Neutronendiffraktogramm der Legierung $Mg_8Ni_{10}Zn_6$ (Stabdurchmesser 8 mm, Wärmebehandlung 10 Tage 650°C/Luft), Wellenlänge $\lambda = 1,100$ Å.

wurde eine Abweichung beobachtet, die durch eine Textur in den gegossenen Legierungen verursacht ist.

Als Beispiel einer Intensitätsauswertung der Neutronenbeugungsmessungen dienen hier die für die Legierungen $Mg_8Cu_8Zn_8$ und $Mg_8Ni_8Zn_8$ gemessenen Intensitäten für eine statistische und eine geordnete Verteilung der Cu- und Zn- bzw. Ni- und Zn-Atome im Cu-Teilgitter, die in der Tabelle II zusammengestellt sind. Die berechneten Intensitäten beinhalten bereits eine Korrektur auf den Polarisations-Lorentz- und den Häufigkeitsfaktor für Pulveraufnahmen.

Um die Anderung der physikalischen Eigenschaften des ternären Mischkristalls MgCu_{2-x}Zn_x vom MgCu₂-Strukturtyp in Abhängigkeit von der chemischen Zusammensetzung in einer Übersicht vergleichen zu können, ist eine zusammenfassende Darstellung der veröffentlichten Meßwerte (2, 6, 8, 9, 11, 12, 15) in Abb. 3 wiedergegeben. Ferner bringt Abb. 4 einen Vergleich des Einflusses unterschiedlicher Komponenten magnesiumhaltiger ternärer Mischkristalle vom MgCu₂-Typ auf die maximale Wasserstofflöslichkeit in diesen Legierungen. Es stellte sich heraus, daß die maximale Wasserstofflöslichkeit in diesen Phasen der gleichen mittleren Valenzelektronendichte entspricht. Die mittlere Valenzelektronendichte D_V wurde aus folgender Beziehung ermittelt:

$$D_{\rm V} = \frac{N_{\rm V}^2}{V^2}$$
 in Anzahl der Valenzelektronen je

Volumeneinheit z.B. $1/Å^3$.

In dieser Beziehung ist N_V^Z = Anzahl der Valenzelektronen je Elementarzelle und V^Z = Volumen der Elementarzelle.

Die Anzahl der Atome in einer ternären Legierung vom MgCu₂-Typ ändert sich nicht, wie aus einer Messung der makroskopischen Dichte hervorgeht (11); sie bleibt also gleich 24.

Für die Berechnung der Anzahl der Valenzelektronen je Elementarzelle wurde für den Mischkristall MgNi_{2-x}Zn_x ein temperaturabhängiger *d*-Elektronenbeitrag berücksichtigt (22), der für die Temperatur

ELLNER UND PREDEL

TABELLE II

(hkl) _k	(hkl) _t	n_v^a	I_{c}^{1}	I_c^2	I_{o}^{1}	$I_{\rm c}^3$	$I_{\rm c}^4$	$I_{\rm o}^2$
001	001	0,044	0	97	nbt	0	559	nbt
011	010	0,123	0	48	nbt	0	227	nbt
111	011	0,245	624	624	10,1	1293	1293	16,1
002	002	0,349	0	0	nbt	0	0	nbt
	110		0	0	&	0	0	&
012	111	0,488	0	0	nbt	0	0	nbt
112	012	0,641	0	31	nbt	0	178	nbt
022	112	0,987	685	685	18,0	671	671	14,2
	020		343	343	&	336	336	&
122	021	1,178	0	40	nbt	0	231	nbt
003	003		0	10	&	0	58	&
013	120	1,380	0	18	nbt	0	103	nbt
113	013	1,592	1916	1916	100	2398	2398	100
	121		3831	3831	&	4796	4796	&
222	022	1,814	2889	2889	52,7	4091	4091	55,4
023	113		0	0	nbt	0	0	nbt
123	122		0	25	nbt	0	142	nbt
004	004		194	194	10,5	338	338	16,2
	220		389	389	&	676	676	&
223	023		0	20	nbt	0	114	nbt
014	221		0	20	&	0	114	&
033	030		0	5	nbt	0	27	nbt
114	014		0	9	&	0	54	&
133	123		172	172	5,0	356	356	7,7
	031		86	86	&	178	178	&
024	114		0	0	nbt	0	0	nbt
	222		0	0	&	0	0	&
	130		0	0	&	0	0	&
124	131		0	0	nbt	0	0	nbt
233	032		0	7	nbt	0	42	nbt
224	024		200	200	11,3	196	196	9,5
	132		400	400	&	391	391	&
034	223		0	12	nbt	0	73	nbt
005	005		0	3	&	0	18	&
134	124		0	12	nbt	0	70	nbt
015	230		0	6	&	0	35	&
333	033		686	686	48,8	857	857	49,9
115	015		686	686	&	857	857	&
	231		1372	1372	&	1714	1714	&
234	133		0	0	nbt	0	0	nbt
025	115		0	0	&	0	0	&
125	232		0	10	nbt	0	59	nbt
044	224		1792	1792	50,6	2298	2298	52,5
	040		896	896	æ	1149	1149	&
225	025		0	9	nbt	0	52	nbt
144	041		0	9	&	0	52	&
334	034		0	4	nbt	0	25	nbt
035	140		0	4	&	0	25	&

Vergleich der beobachteten und berechneten Intensitäten von Mg_8Cu_8Zn_8 und Mg_8Ni_8Zn_8 für eine statistische und eine geordnete Verteilung von Cu- und Zn- bzw. Niund Zn-Atomen im Cu-Teilgitter des MgCu_2-Strukturtyps

TABELLE I	I (cont.)
-----------	-----------

(hkl) _k	(hkl) _t	n _v ^a	I_{c}^{1}	I_c^2	I_{o}^{1}	$I_{\rm c}^3$	I ⁴ _c	I_o^2
135	125		83	83	7,2	171	171	8,0
	141		83	83	&	171	171	&
	233		83	83	&	171	171	&
244	134		0	0	nbt	0	0	nbt
	042		0	0	&	0	0	&
006	006		0	0	&	0	0	&
	330		0	0	&	0	0	æ
016	331		0	0	nbt	0	0	nbt
235	142		0	8	nbt	0	44	nbt
116	016		0	4	&	0	22	&
026	116		108	108	7,2	105	105	4,4
_	332		108	108	&	105	105	&
	240		108	108	&	105	105	&
344	043		0	7	nbt	0	40	nbt
126	241		0	14	&	0	80	&
045	225		0	7	&	0	40	&
145	234		0	7	nbt	0	39	nbt
335	035		388	388	26,9	484	484	21,8
	143		776	776	&	969	969	&
226	026		626	626	36.2	884	884	37.9
	242		1252	1252	&	1768	1768	&

Bemerkung: I_c^1 = berechnete Intensitäten für die tetragonale Unterstrukturzelle von Mg₈Cu₈Zn₈ $S_4^1 - P\overline{4}$: a = 5,069, c = 7,169 Å, 1 Mg(a) 0,0,0; 1 Mg(d) 0,500, 0,500, 0,500; 2 Mg(g) 0, 0,500, 0,250; 0,5x4 Cu(h) 0,250, 0,500, 0,875; 0,5x4 Cu(h) 0, 0,250, 0,625; 0,5x4 Zn(h) 0,250, 0,500, 0,875; 0,5x4 Zn(h) 0, 0,250, 0,625.

 I_{c}^{2} = berechnete Intensitäten für die tetragonale Unterstrukturzelle von Mg₈Cu₈Zn₈

 $S_4^1 - P\overline{4}$: a = 5,069, c = 7,169 Å, 1 Mg(a) 0,00; 1 Mg(d) 0,500, 0,500, 0,500; 2 Mg(g) 0, 0,500, 0,250; 4 Cu(h) 0,250, 0,500, 0,875; 4 Zn(h) 0, 0,250, 0,625.

 I_0^1 = beobachtete relative Intensitäten 100 · $I_{hkl}/(I_{013}+I_{121})$ von Mg₈Cu₈Zn₈ (Regulus 3d 250°C/Luft, Pulver 3d 250°C/Luft).

 I_c^3 = berechnete Intensitäten für die tetragonale Unterstrukturzelle von Mg₈Ni₈Zn₈ S_4^1 - $P\overline{4}$: a = 5,020, c = 7,099 Å, Atomlagen für Mg, Ni und Zn analog wie bei I_c^1 .

 I_c^4 = berechnete Intensitäten für die tetragonale Unterstrukturzelle von Mg₈Ni₈Zn₈ $S_4^1-P\overline{4}$: a = 5,020, c = 7,099 Å, Atomlagen für Mg, Ni und Zn analog wie bei I_c^2 .

 I_o^2 = beobachtete relative Intensitäten 100 · $I_{hkl}/(I_{013} + I_{121})$ von Mg₈Ni₈Zn₈ (Stab ø 8 mm, 3d 400°C/Luft).

 $I_c = HPLG(F_c^N)^2$, $(hkl)_k = kubische P$ -Indizierung, $(hkl)_t = tetragonale P$ -Indizierung, $n_v^a = Taktionsvalenzelektronenkonzentration der Brillouin-Zone {<math>hkl$ }

von 550°C (d.h. für die mittlere Temperatur, bei der die Wasserstofflöslichkeit gemessen wurde) ca. 0,64 Elektronen je Ni-Atom beträgt. Die für die maximale Wasserstofflöslichkeit der Mischkristalle MgCu_{2-x}Zn_x, MgCu_{2-x}Al_x, MgCu_{2-x}Si_x und MgNi_{2-x}Zn_x resultierenden mittleren Valenzelektronendichten sind in Tabelle III aufgeführt.

Diskussion

Zur Betrachtung einer geordneten Verteilung von Cu- und Zn-, bzw. Ni- und Zn-Atomen im Cu-Teilgitter des MgCu₂-Strukturtyps ist es zweckmäßig, die kleinste orthogonale Elementarzelle für diesen Strukturtyp zu wählen. Aus Abb. 5 ist ersichtlich, daß die kubische F-Elementarzelle

ABB. 4. Wasserstofflöslichkeit einiger ternärer Mischkristalle vom MgCu₂-Strukturtyp als Funktion der chemischen Zusammensetzung.

 $(O_{h}^{7}-Fd3m: 8 Mg(a) 0,0,0; 16 Cu(d) 0,625,$ 0,625, 0,625) zu der tetragonalen I-Elementarzelle halbiert werden kann $(D_{4h}^{19} I4_1/amd 4 Mg(a) 0,0,0; 8 Cu(d) 0, 0,250,$ 0,625 (23). Diese tetragonale Elementarzelle (t) hängt mit der kubischen Elementarzelle (k) durch folgende Matrix zusammen: $(a_{t}, b_{t}, c_{t}) = (a_{k}, b_{k}, c_{k})(\frac{1}{2}, \frac{1}{2}, 0; -\frac{1}{2}, \frac{1}{2}, 0; 0, 0, 1),$ die usw. wobei Vektoren at als Spalten anzunehmen sind, d.h. $a_h = a_k/2$ $-b_{\rm k}/2$.

Durch eine geordnete Substitution von Cu-Atomen durch Zn-Atome wird die

ABB. 3. Übersicht über einige physikalische Eigenschaften des ternären Mischkristalls $Mg_{0,333}Cu_{0,667-x}Zn_x$ als Funktion des Zinkgehalts.

Stöchiometrie, bei der die max. Wasserstofflöslichkeit erreicht wurde		Gitterparameter (a in Å)	Volumen der Elementarzelle $(V^Z \text{ in } \text{Å}^3)$	Zahl der Valenzelektronen je Elementarzelle (N_V^Z)	Mittlere Valenz- elektronendichte D_V in Valenzelektronen je Å ³	
MgCu _{1,2} Zn _{0,8}	(7)	7,154 (2)	366,14	38,40	0,105	
		7,148 diese Arbeit, Interpolation	365,22		0,105	
MgCu _{1.7} Al _{0.3}	(19)	7,080 (20)	354,89	36,80	0,104	
MgCu _{1,8} Si _{0,2}	(19)	7,013 (21) Interpolation	344,91	36,80	0,107	
		7,011 diese Arbeit	344,62		0,107	
MgNi _{1,2} Zn _{0,8}	(7)	6,958 (2) Interpolation	336,86	34,94 (x)	0,104	

TABELLE III

ZUSAMMENHANG ZWISCHEN DER MAXIMALEN WASSERSTOFFLÖSLICHKEIT UND DER MITTLEREN VALENZELEKTRONENDICHTE EINIGER TERNÄRER MISCHKRISTALLE VOM MgCu2-Strukturtyp^a

^a Bemerkung: (x) für ein Ni-Atom wurde für 550°C ein *d*-Elektronenbeitrag von 0,64 *d*-Elektronen/Atom berücksichtigt (siehe Text und Lit. (22)). Literaturangaben bei Meßdaten in Klammern.

Symmetrie der Elementarzelle erniedrigt und die Elementarzelle 1st nicht mehr *I*zentriert. Die größte Wahrscheinlichkeit zur Bildung einer Fernordnung bietet die chemische Zusammensetzung MgCuZn bzw. MgNiZn, die im Falle der tetragonalen Elementarzelle zur Formel Mg₄Cu₄Zn₄ bzw. Mg₄Ni₄Zn₄ führt. Die Erwartung, daß bei dieser Stöchiometrie eine Überstruktur gebildet werden kann, war durch die Tatsache gestützt, daß das Zustandsdiagramm MgCu_{2-x}Zn_x bei der entsprechenden chemischen Zusammensetzung ein Maximum der Liquiduslinie zeigt (2)

ABB. 5. Zusammenhang zwischen der tetragonalen und der kubischen Elementarzelle des MgCu₂-Strukturtyps.

(Abb. 3). Als Beispiel einer möglichen Fernordnung dieser ternären Legierungen sei folgender Strukturvorschlag angegeben: $S_4^1 - P\bar{4}$: 1 Mg(a) 0,0,0; 1 Mg(d) 0,500, 0,500, 0.500; 2 Mg(g) 0, 0.500, 0.250; 4 Ca(h) $0,250, 0,500, 0,875; 4 \operatorname{Zn}(h) 0, 0,250, 0,625.$ Der Strukturvorschlag geht von der Vorstellung aus, daß bei Bildung des MgCu₂-Strukturtyps die Bindungsbeziehungen zwischen den gleichartigen Atomen eine bedeutsame Rolle spielen und daß der Überstrukturreflex $(013)_k = (120)_t$, der einer Taktionsvalenzelektronenkonzentration $n_v^a =$ 1,38 entspricht, als nicht ausgelöscht gerechnet wird (siehe Tabelle II). Aus den für die Neutronenbeugung an MgCuZn für den oben angegebenen Strukturvorschlag berechneten Intensitäten (Tabelle II) ist ersichtlich, da β die berechnete relative Intensität für den Reflex $(013)_k I_{013}/I_{113} =$ 0.3% ist und deswegen nicht beobachtet Der Überstrukturreflex werden kann. $(001)_{k} = (001)_{t}$, der knapp außerhalb des Bereichs des divergenten Primärstrahls liegt, sollte jedoch mit einer berechneten relativen Intensität $I_{001}/I_{113} = 1,7\%$ beobachtbar sein. Da der Unterschied zwischen den Atomfaktoren für Neutronenbeugung für Nickel und Zink größer als für Kupfer und Zink ist, sind auch die berechneten Intensitäten der Überstrukturreflexe für die Legierung MgNiZn bezüglich der möglichen Beobachtung günstiger. Für den angegebenen Strukturvorschlag liegt die berechnete relative Intensität für $I_{013}/I_{113} = 1,4\%$ und für $I_{001}/I_{113} = 7,8\%$ deutlich im Bereich einer möglichen Beobachtung.

Es sei bemerkt, daß auch zahlreiche andere Strukturvorschläge mit vergrößerten tetragonalen bzw. pseudotetragonalen Elementarzellen (d.h. der Strukturvorschlag war in einer orthorhombischen Raumgruppe aufgestellt) Überstrukturreflexe aufwiesen, deren Reflexintensitäten im experimentell nachweisbaren Bereich waren. Da jedoch keine neuen Reflexe bei unserer Messung beobachtet wurden, muß man annehmen, daß eine Fernordnung bei den psuedobinären Laves-Phasen nicht vorhanden ist. Die Frage, ob eine Nahordnung in den pseudobinären Laves-Phasen bei bestimmten chemischen Zusammensetzungen vorkommt und damit die physikalischen Eigenschaften der Mischkristalle beeinflußt, soll im Rahmen dieser Arbeit nicht diskutiert werden.

Aus der zusammenfassenden Darstellung der physikalischen Eigenschaften für den Mischkristall $Mg_{0,33}Cu_{0,667-x}Zn_x$ (Abb. 3) ist zu entnehmen, daß die bei ca. $x_{Zn} = 0.06$ beobachtete Abnahme der magnetischen Suszeptibilität und der Wasserstofflöslichkeit auch mit einer Stabilitätsminderung (d.h. mit einer Abnahme der negativen Bildungsenthalpie) verbunden ist. Lieser und Witte (24) führen das Minimum der Wasserstofflöslichkeit bei den ternären Laves-Phasen vom MgCu₂-Strukturtyp (siehe auch Abb. 4) auf eine Uberlappung von zwei Bändern im Bereich der Valenzelektronenkonzentration 1,33 zurück, da die Zustandsdichte der Energiewerte beim Übergang von einer Brillouin-Zone in die andere ein Minimum erreicht. Eine spätere Benutzung quantentheoretischen des Störungsverfahrens von Schnabl (16) für die Deutung der Wasserstofflöslichkeit in den Legierungen mit MgCu₂-Struktur hat keine Erklärung des Minimums der Wasserstofflöslichkeit gebracht. Wir möchten darauf hinweisen, daß das lokale Extrem im Verlauf der magnetischen Suszeptibilität, der Wasserstofflöslichkeit und der Bildungsenthalpie in Abhängigkeit von der chemischen Zusammensetzung mit einer Taktionsvalenzelektronenkonzentration der Fermikugel $(n_v^a = 1,38)$ für eine Brillouin- $\{013\}_{k} = \{120\}_{t}^{v}$ erstaunlich Zone gut übereinstimmt. Der diese Brillouin-Zone bildende Reflex (013)_k bzw. (120)_t entspricht allerdings einer kubisch primitiven bzw. einer tetragonal primitiven Elementarzelle, die bei einer zweikomponentigen Phase vom MgCu₂-Strukturtyp bzw. bei einer dreikomponentigen Phase von diesem Strukturtyp für den Fall einer völlig statistischen Verteilung der Cu- und Zn-Atome im Teilgitter nicht in Frage kommt. Es sei ferner bemerkt, daß bei unseren Neutronenbeugungsmessungen an der Legierung Mg₈Cu₁₅Zn₁, die in der Nähe der diskutierten chemischen Zusammensetzung liegt, ein Reflex $(013)_k = (120)_t$ nicht beobachtet wurde und so kein Anhaltspunkt zur Annahme einer Überstruktur gegeben ist. Es ist aber zu betonen, daß die Nachweisgrenze geordneten Atomverteilung einer bei Mg₈Cu₁₅Zn₁ im Vergleich zu der oben diskutierten Legierung MgCuZn und MgNiZn wegen der niedrigen Konzentration der Zinkatome eventuell unter der Grenze der gegebenen Beobachtrungsmöglichkeiten liegt. Es ist jedoch denkbar, daß eine Abweichung von der streng statistischen Verteilung der Cu- und Zn-Atome im Cu-Teilgitter zur Störung der F-Symmetrie der kubischen (bzw. der I-Symmetrie der tetragonalen) Elementarzelle und damit zur Entstehung einer ungewöhnlich schwachen $\{013\}_{k} = \{120\}_{t}$ Brillouin-Zone führen könnte. Die Legierungen, die mit ihrer chemischen Zusammensetzung im Bereich der Taktionsvalenzelektronenkonzentration dieser Brillouin-Zone $(n_v^a = 1,38)$ liegen, können dann eine signifikante Änderung der physikalischen Eigenschaften aufweisen.

Auf die Bedeutung der Taktionsvalenzelektronenkonzentration für die Brillouin-Zonen $\{113\}_k$ und $\{222\}_k$, die einer kubisch allflächenzentrierten Elementarzelle vom MgCu₂-Typ entsprechen, ist bereits früher hingewiesen worden (1, 25). Die Taktionsvalenzelektronenkonzentration n_v^a für die Brillouin-Zone $\{113\}_k$ beträgt 1,592 (6). Für den ternären Mischkristall MgCu_{2-x}Zn_x liegt sie in der Nähe der Stöchiometrie Mg₈Cu₁₀Zn₆, für die 38 Elektronen je kubischer Elementarzelle anzunehmen sind. Aus Abb. 3 ist ersichtlich, daß die starke Änderung der physikalischen Eigenschaften des Mischkristalls Mg_{0,33}Cu_{0,667-x}Zn_x, die bei ca. $x_{Zn} = 0,27$ beobachtet wird, mit der Taktionsvalenzelektronenkonzentration der Brillouin-Zone {113}_k zusammenhängt. Man sieht, daß bei dieser $n_v^a = 1,592$ die physikalischen Eigenschaften entweder lokale Extreme aufweisen (z.B. die Bildungsenthalpie, die auf eine Stabilitätsminderung hindeutet, ferner die magnetische Suszeptibilität und der γ -Wert der Elektronenwärme) oder den im Existenzbereich des MgCu₂-Strukturtyps auftretenden einzigen Maximalwert (Wasserstofflöslichkeit) oder Minimalwert, (Gitterparameter unter hohem Druck, Elastizitätsmodul) erreichen. Der Zusammenhang zwischen der maximal gemessenen magnetischen Suszeptibilität und den γ -Werten der Elektronenwärme bei ca. $x_{Zn} = 0,12$ war bereits früher erwähnt worden. Die Abhängigkeit der Bildungsenthalpie von der chemischen Zusammensetzung zeigt für $0,12 < x_{Zn} < 0,18$ einen auffallend flachen Verlauf.

In einer vorausgegangenen Arbeit (15)wurde die Beobachtung mitgeteilt, daß ein Stabilitätsabfall des ternären Mischkristalls $MgCu_{2-x}Zn_x$ vom MgCu₂-Typ bei bestimmten ganzzahligen Stöchiometrien der Elementarzelle vorkommt. In der vorliegenden Arbeit wurde gezeigt, daß bei diesen Stöchiometrien keine Fernordnung durch Beugungsmethoden in polykristallinen Legierungen nachweisbar ist, man kann daher die Stabilitätsminderung nicht auf die Bildung einer Überstruktur zurückführen. Dabei bleibt die Frage offen, ob möglicherweise eine Nahordnung bei stöchiometrischen Zusammensetdiesen besonders ausgeprägt ist und zungen dadurch im Vergleich zu den nicht genau stöchiometrischen Zusammensetzungen eine relative Änderung der physikalischen Eigenschaften bedingt wird. Außerdem kann vermutet werden, daß es sich um Effekte elektronischer Natur handelt; man kann nämlich annehmen, daß die ganzzahligen stöchiometrischen Verhältnisse, die bei den A- und B-Metallen ebenso wie in den anorganischen Valenzverbindungen einer ganzzahligen Anzahl der Valenzelektronen je Elementarzelle entsprechen, zu einem "vollkommenen" Ladungsquantum führen, so daß sich die Bindungsbeziehungen zwischen den beteiligten Atomen in einer Änderung der Stabilität des ternären Mischkristalls äußern können. So kann man die Stabilitätsabnahme (Abb. 3) den guantisierten elektronischen Zuständen zuordnen, bei denen die kubische Elementarzelle 33, 34, 36, 38 und 40 Valenzelektronen erreicht hat. Die Zustände mit 33 und 38 Elektronen je Elementarzelle liegen in der unmittelbaren Nähe der Taktionsvalenzelektronenkonzentrationen für die Brillouin-Zone angenommene {013}k $(33/24 = 1,375 \doteq 1,380)$ und für die bestehende Brillouin-Zone $\{113\}_k$ (38/24 = $1,583 \doteq 1,592$).

Aufgrund der Untersuchung der physikalischen Eigenschaften ternärer Laves-Phasen kamen mehrere Verfasser zu dem Schluß, daß die Annahme, die Elektronen verhielten sich wie freie Elektronen, nicht zutreffend ist (6) und deswegen bei Betrachtung der Bindungsbeziehungen in den Laves-Phasen auch die Elektronegativitätsdifferenzen der beteiligten Komponenten berücksichtigt werden sollten (13). Es ist zu bemerken, da β nicht nur die ganzzahlige Anzahl der Valenzelektronen je Elementarzelle für den ternären Mischkristall von Bedeutung ist, sondern daß man bei solcher Betrachtung auch das die Elektronen liefernde Atom bezüglich seiner Wertigkeit und Atomgröße berücksichtigen muß. Bei der Beurteilung der Elektronegativität der Elemente spielt nämlich die Wertigkeit und die Atomgröße eine wesentliche Rolle. In einer früheren Arbeit (26) wurden die mittleren Valenzelektronendichten zur Deutung einiger kristallchemischer Gegebenheiten beim Ni₂In- und beim NiAs-Strukturtyp benutzt. Wir möchten am Bei-

spiel der maximalen Wasserstofflöslichkeit zeigen, daβ auch bei Laves-Phasen die Faktoren des unterschiedlichen Valenzelektronenbeitrags und der unterschiedlichen Atomgröße durch die mittlere Valenzelektronendichte zusammengefaßt werden können. Das Erreichen einer bestimmten Valenzelektronendichte kann der Grund für eine Änderung der kristallchemischen oder physikalischen Eigenschaften sein. Aus Abb. 4 ist ersichtlich, daß für die ternären Mischkristalle $MgCu_{2-x}Zn_x$, $MgCu_{2-r}Al_r$ $MgCu_{2-x}Si_x$ und $MgNi_{2-x}Zn_x$ die chemische Zusammensetzung, bei der die maximale Wasserstofflöslichkeit erreicht wird. durchaus unterschiedlich ist. Man kann diese Unterschiede auch nicht durch eine einheitliche Valenzelektronenkonzentration beschreiben, wie aus einer entsprechenden Darstellung hervorgeht (24). Während eine höher- bzw. niedrigerwertige Komponente als Zink das Maximum der Wasserstofflöslichkeit zu niedrigeren Valenzelektronenkonzentrationen verschiebt und eine beträchtliche Abweichung des $N_{\rm V}^Z$ -Wertes von 4,2% bzw. 9% bei dem Mischkristall $MgNi_{2-x}Zn_x$ zur Folge hat (siehe Tabelle III), werden die Abweichungen durch Einführung einer mittleren Valenzelektronendichte gemindert und erreichen einen Wert von nur 1,9% (bezogen auf den Mischkristall $MgCu_{2-x}Zn_x$) bzw. 2,9% (maximale Streuung der berechneten mittleren Valenzelektronendichten). Damit ist gezeigt, daß das Maximum der Wasserstofflöslichkeit, das bei Phasen aus unterscheidlich großen Elementen bei verschie-Valenzelektronenkonzentrationen denen liegt, bei gleicher mittlerer Valenzelektronendichte gefunden wird. Das setzt allerdings voraus, daß der Strukturtyp sich nicht oder nur geringfügig ändert. In diesem Falle bleiben naturgemäß die Bindungsbeziehungen und die tatsächliche Verteilung der Elektronen im Strukturgitter konform.

Dank

Dem Kernforschungszentrum Karlsruhe danken wir für die Ermöglichung der Neutronenbeugungsmessungen am Reaktor FR2. Ferner danken wir Herrn T. Gödecke für die Durchführung von DTA-Messungen.

Die Untersuchungen wurden durch die Deutsche Forschungsgemeinschaft gefördert.

Literatur

- 1. F. LAVES UND H. WITTE, Metallwirtschaft 15, 840 (1936).
- 2. K. H. LIESER UND H. WITTE, Z. Metallk. 43, 396 (1953).
- 3. Y. KOMURA, M. MITARAI, A. NAKAUE, UND S. TSUJIMOTO, Acta Crystallogr. Sect. B 28, 976 (1972).
- 4. K. SCHUBERT, Acta Crystallogr. Sect. B 30, 1538 (1974).
- 5. K. BURKHARDT UND K. SCHUBERT, Z. Metallk. 56, 864 (1965).
- 6. H. KLEE UND H. WITTE, Z. Phys. Chem. (Leipzig) 202, 352 (1953).
- 7. K. H. LIESER UND H. WITTE, Z. Phys. Chem. (Leipzig) 202, 321 (1953).
- 8. D. STEINER, Z. Naturforsch. A. 22, 1284 (1967).
- 9. CH. A. BECHMAN UND R. S. CRAIG, J. Chem. Phys. 54, 898 (1971).

- 10. H. GNANN UND W. EICHENAUER, Z. Naturforsch. A 31, 288 (1976).
- 11. G. W. SHANNETTE UND J. F. SMITH, J. Appl. Phys. 42, 2799 (1971).
- 12. G. OOMI, Japan. J. Appl. Phys. 16, 1247 (1977).
- 13. B. PREDEL UND H. RUGE, Mater. Sci. Eng. 9, 141 (1972).
- 14. B. PREDEL UND H. RUGE, Mater. Sci. Eng. 9, 333 (1972).
- B. PREDEL, H. BENCKER, W. VOGELBEIN, UND M. ELLNER, J. Solid State Chem. 28, 245 (1979).
- 16. H. SCHNABL, Ber. Bunsenges. Phys. Chem. 68, 549 (1964).
- 17. H. J. BODE, Z. Elektrochem. 61, 376 (1957).
- 18. A. HADDING, Zentralbl. Mineral. Geol. Palaeontol. 20, 631 (1921).
- 19. W. SIEGELIN, K. H. LIESER, UND H. WITTE, Z. Elektrochem. 61, 359 (1957).
- 20. F. LAVES UND H. WITTE, Metallwirtschaft 15, 15 (1936).
- 21. H. WITTE, Metallwirtschaft 18, 459 (1939).
- 22. K. SCHUBERT, "Kristallstrukturen zweikomponentiger Phasen," S.62, Springer-Verlag, Berlin (1964).
- 23. "International Tables for X-Ray Crystallography," Band I, Kynoch Press, Birmingham (1952).
- 24. K. H. LIESER UND H. WITTE, Z. Elektrochem. 61, 367 (1957).
- 25. K. SCHUBERT, in "Zur Struktur und Materie der Festkörper," Springer-Verlag, Berlin (1952).
- 26. M. ELLNER, J. Less Common Metals 48, 21 (1976).